Knee Dislocations in Patients with BMI >40

William H. Harvin, MD
Assistant Professor
University of Texas Health Science Center at Houston

October 20, 2016

Disclosures

• None.
Obesity epidemic

• 35% American population is obese.*
• Obesity rate is climbing.
• $147 billion estimated-cost of obesity treatment in US (2008)[1]

Low vs Ultra-low velocity KD

- Several case reports and case series about “low velocity” KDs
 - Mostly sports injuries
- First case reports on USVKD in 1990*
 - Numerous case reports or small series
- Retrospective, 6 years.
 - 17 patients with KD while performing normal daily activities.
 - Mean age: 28.6 years.
 - Mean BMI: 48 (30-68).
 - 13/17 were ANTERIOR dislocations → most likely related to HYPEREXTENSION
 - 7/17 (41%) neurologic injuries
 - 5 peroneal
 - 2 peroneal and tibia
 - 7/17 (41%) popliteal artery injuries
 - Mean follow-up: 28.5 months (8-60)
 - 11 patients with complete follow-up
 - 4 patients lost to follow-up (1 died)
 - 8 patients treated with reconstruction and remained treated with brace/splint, cross pins, or exfix.
 - 6/17 patients with complete follow-up underwent reconstruction.

Ultra-Low-Velocity Knee Dislocations.
Azar et al., AJSM, 2011.

- Outcomes:
 - Higher BMI more likely to have vascular injury (Trend; p=0.0543)
 - Higher BMI more likely to have combined vascular & neurologic injury (p=0.0225)
 - All had “severely abnormal” outcomes IKDC
 - Improved HSS score in reconstructed knees versus non-reconstructed knees (p=0.013)
 - 4/7 vascular repairs successful (2 AKA, 1 died)
 - All had “severely abnormal” outcomes IKDC
 - Lysholm or Tegner
 - Based upon 11 patients (6 recon vs 5 closed)
 - 8/17 patients had complications
 - 2 AKAs
 - 1 superficial infection
 - 1 severe dehiscence
 - 2 LOA/MUA
 - 1 death
Ultra-Low Velocity Knee Dislocations:
Patient Characteristics, Complications, and Outcomes. Werner et al., *AJSM*, 2014.

- Retrospective, 12 years
- Inclusions:
 - Low energy fall mechanism
 - All patients underwent surgery
- 23 patients
- Mean BMI: 49

Follow-up available for 17/23 patients
Mean follow-up 5.8 years.

Outcomes:
- 6/23 (26.1%) vascular injuries (Significant increase compared to non ULVKD)
- 9/23 (39.1%) neurologic injuries (Significant increase compared to non ULVKD)
- 12/24 (50%) KDIV
 - PLC injured in 22/23
 - 17/22 complications (overall significant increase)
 - 12 persistent pain
 - 4 vascular
 - 2 neurologic
 - 2 instability
 - 2 vascular claudication
 - 2 DVT/PE
 - 2/17 convert to TKA due to pain/arthritis
 - 12/17 (71%) “dissatisfied” or “extremely dissatisfied” with outcome

Low Velocity KD in Obese and Morbid Obese Patients.

- Retrospective, 2000-2011
- 19 patients (5M; 14F)
- Mean age: 30.3 yrs
- Mean BMI: 41.8 kg/m²
 - 9 Obese (BMI 30-39.9 kg/m²)
 - 10 Morbid Obese (40-64.4 kg/m²)

- Treatment protocol
 - Pre 2006, ex-fix or cast/splint x 6 weeks as definitive treatment
 - After 2006
 - Open PLC repair; repair or reconstruction ACL; ex-fix
 - Ex-fix removal at 6 weeks; gentle MUA
 - PT with hinged knee brace (only 5/18 had properly fitted brace)
Low Velocity KD in Obese and Morbid Obese Patients.

- 5/19 (26%) popliteal artery injury.
- 7/19 (33%) peroneal nerve injury with 50% recovering.

Results
- Mean OR time significant increased compared to non-obese (p = 0.0000035):
 - Obese: 8.6 hrs
 - Non-obese: 5.8 hrs
- ROM (if compliant with PT): NS
 - Operation: 90 degree of motion
 - Nonoperative: 60 degree of motion
- Tegner (change from pre to post injury): NS
 - Operation: 0.86
- Knee society score, ML laxity significantly improve with surgery but not AP laxity (p=0.0006)
- 2/8 failed reconstructions (recurrent falls)
- 1 late ACL reconstruction for symptomatic instability
- 3/9 non-op KDs → TKA due to residual instability and pain

Counsel Patients
- Not only do they have standard risks of KD but...
 - Increased vascular injuries
 - Increased neurologic injuries
 - Worse functional outcomes
 - Pain
 - Stiffness
 - Recurrent instability
 - Wound complications/infection
 - DVT/PE
 - Vascular claudication

Treatment: Step One
- Prompt reduction, immobilization, check vascularity.
- Obese patients may have increased delays in diagnosis of KD and/or vascular injuries.*
 - Many spontaneously reduce.
 - Body habitus complications, presentation or exam.

Challenges present at every step of the treatment algorithm.

Workup Challenges

- Imaging
 - MRI diameter
 - Closed bore MRI size: 60cm
 - Wide bore MRI size: 70cm
 - "Open" MRI
 - MRI weight limit
 - 250-660lbs (most 300-350 lbs)
- CT scan
- Stress radiographs
Surgical Challenges

• OR bed weight limit
 • May need specialized bed
 • May need two beds

• Arthroscopic equipment size
 • Standard knee arthroscope working length: 160-175mm
 • Hip arthroscope working length: 200-225mm

Postop Challenges

• Immobilization
 • Brace or splints may not be effective

• External fixation
 • Remember principles of stability
 • Increase pin size
 • Increase pin number
 • Spread pins in a single segment
 • Add different planes
 • Proximity to extremity

The New ULVKD?
The New ULVKD?

Ultra-low velocity KDs

- Counsel patients upfront on expectations
- EUA and/or stress radiographs
- Bring help
- Open repair vs reconstruction
- Immobilize possibly with external fixator
- Plan for a long day

Thank you!