10th ANNUAL RESEARCH SYMPOSIUM
SIERRA NEVADA CHAPTER (SNC) of the SOCIETY FOR NEUROSCIENCE (SfN) and 3rd ANNUAL MEETING OF NEVADAs NEUROSCIENCE COBREs

Tuesday, November 19th, 2019, 12:30pm – 6:30pm
PENNINGTON HEALTH SCIENCES Building 103
University of Nevada, Reno, School of Medicine

12:30 – 1:00  Posters in the Atrium
1:00 – 1:10  Christopher von Bartheld (Incoming President SNC-SfN) Opening Remarks

1:10 – 1:45  Cam Tran (Physiology and Cell Biology, UNR Med, Cardiovascular COBRE) Untangling the Astrocyte - Vascular Cell Relationship during Functional Hyperemia in Awake Animals

1:45 - 2:20  Thomas Kidd (Biology, UNR, Cell Biology COBRE) Wiring up the Nervous System: Creating New Signals through Cleavage

2:20 – 2:55  Pedro Miura (Biology, UNR, Integrative Neuroscience COBRE) Alternative RNAs in the Nervous System


3:30 – 4:00  Posters & Refreshments (Business Meeting: Amy Altick, SfN Chapter)

4:00 – 4:35  Jeffrey Kinney (Brain Health, UNLV, Neurodegeneration COBRE) Mechanisms Underlying the Increased Risk for Alzheimer’s Disease due to Diabetes Mellitus and Potential Treatments

4:35 – 5:10  Marian Berryhill (Psychology, UNR, Integrative Neuroscience COBRE) Persistent Cognitive Consequences of Concussion

5:15 – 6:00  Key Note Lecture: Thomas Albright (Vision Center Laboratory, SALK Institute) Contextual Influences on Visual Processing

6:10 – 6:30  Refreshments
KEYNOTE: Thomas Albright, Ph.D.
SALK Institute

Synopsis of Talk: Contextual Influences on Visual Processing

Perception is influenced both by the immediate pattern of sensory inputs and by memories acquired through prior experiences with the world. Throughout much of its illustrious history, however, study of the cellular basis of perception has focused on neuronal structures and events that underlie the detection and discrimination of sensory stimuli. Relatively little attention has been paid to the means by which memories interact with incoming sensory signals. Building upon recent neurophysiological/behavioral studies of the cortical substrates of visual associative memory, I propose a specific functional process by which stored information about the world supplements sensory inputs to yield neuronal signals that can account for visual perceptual experience. This perspective represents a significant shift in the way we think about the cellular bases of perception.