Sudden Cardiac Death in Young Athletes

Ivan Anderson, MD
RIHNVH Cardiology
Outline

• Background
• Specific Causes
Outline

• Background
• Specific Causes
Background

- Rare
 - Incidence is ~ 1 per 100,000 person-years
 - One study (cited below) in a population of 1.23 million filtered down to 361 cases over 30 years
- Represents 75% of all fatalities during sports
- Survival < 15% by many studies

Circulation. 2012;126:1363-1372
Causes of death in the US population aged 1 to 21 years.
Outline

• Background
• Specific Causes
Outline

• Background
• Specific Causes
Causes of Sudden Death

1. HCM
2. Anomalous Coronary Artery
3. Myocarditis
4. ARVC

Other congenital HD (2%)
Ion channelopathies (3%)
Aortic rupture (2%)
Sarcoidosis (1%)
Dilated C-M (2%)
AS (3%)
CAD (3%)
Tunneled LAD (3%)
MVP (4%)

Indeterminate LVH - possible HCM (8%)

Other (3%)
Normal heart (3%)

Circulation. 2007;115:1643-1655
Causes of Sudden Death in Athletes

1. Hypertrophic cardiomyopathy
2. Anomalous coronary artery
3. Myocarditis
4. Arrhythmogenic right ventricular cardiomyopathy
Causes of Sudden Death in Athletes

1. Hypertrophic cardiomyopathy
2. Anomalous coronary artery
3. Myocarditis
4. Arrhythmogenic right ventricular cardiomyopathy
Hypertrophic Cardiomyopathy
Normal Heart

RV VS LV
Disarrayed Myocytes in Hypertrophic Cardiomyopathy

Normal Myocardium

Myocyte disarray and fibrosis with hypertrophic cardiomyopathy
LA = left atrium, LV = left ventricle, RV = right ventricle, IVS = intraventricular septum, AoV = aortic valve, MV = mitral valve
Athlete’s Heart versus HCM

- Symmetric hypertrophy
- Hypertrophy is rarely greater than 17 mm.
- LV cavity dimension is increased, whereas it is decreased in HCM.
- Diastolic function is normal (Ea >7 cm/sec).
- Tissue Doppler velocities and strain values are normal.
Causes of Death in Hypertrophic Cardiomyopathy
Ventricular Tachycardia
Markers for Sudden Death in Hypertrophic Cardiomyopathy

2° prevention
- Cardiac arrest. Sustained VT

1° prevention
- Familial sudden death
- Unexplained syncope
- Multiple-repetitive NSVT (Holter)
- Abnormal exercise BP response
- Massive LVH

Potential arbitrators
- End-stage phase
- LV apical aneurysm
- Marked LV outflow obstruction (rest)
- Extensive delayed enhancement
- Alcohol septal ablation (?)
- Modifiable
 - Intense competitive sports
 - CAD

% PATIENTS WITH SD

<table>
<thead>
<tr>
<th>MAX. LV WALL THICKNESS (MM)</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td><15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16–19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20–24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25–29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ICD
Hank Gathers
Causes of Sudden Death in Athletes

1. Hypertrophic cardiomyopathy
2. Anomalous coronary artery
3. Myocarditis
4. Arrhythmogenic right ventricular cardiomyopathy
Causes of Sudden Death in Athletes

1. Hypertrophic cardiomyopathy
2. Anomalous coronary artery
3. Myocarditis
4. Arrhythmogenic right ventricular cardiomyopathy
R = Right, L = Left,
A = Anterior, P = Posterior

- Aorta
- Left coronary artery
- Right coronary artery
- Pulmonary artery

Normal anatomy
Anomalous Coronary Artery
“Pistol” Pete Maravich
Causes of Sudden Death in Athletes

1. Hypertrophic cardiomyopathy
2. Anomalous coronary artery
3. Myocarditis
4. Arrhythmogenic right ventricular cardiomyopathy
Causes of Sudden Death in Athletes

1. Hypertrophic cardiomyopathy
2. Anomalous coronary artery
3. Myocarditis
4. Arrhythmogenic right ventricular cardiomyopathy
Myocarditis
<table>
<thead>
<tr>
<th>Virus Type</th>
<th>Virus Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterovirus</td>
<td>Varicella</td>
</tr>
<tr>
<td>Coxsackie A</td>
<td>Mumps</td>
</tr>
<tr>
<td>Coxsackie B</td>
<td>Measles</td>
</tr>
<tr>
<td>Echovirus</td>
<td>Rabies</td>
</tr>
<tr>
<td>Poliovirus</td>
<td>Hepatitis B, C</td>
</tr>
<tr>
<td>Adenovirus</td>
<td>Rubella</td>
</tr>
<tr>
<td>Parvovirus B19</td>
<td>Rubeola</td>
</tr>
<tr>
<td>Cytomegalovirus</td>
<td>Respiratory syncytial virus</td>
</tr>
<tr>
<td>Herpesvirus</td>
<td>Human immunodeficiency virus</td>
</tr>
<tr>
<td>Influenza A and H1N1</td>
<td>Epstein-Barr virus</td>
</tr>
<tr>
<td>Human herpesvirus 6</td>
<td></td>
</tr>
</tbody>
</table>
Diagnosis: Dallas Criteria

1. Lymphocyte infiltration
2. Myocyte necrosis
Reggie Lewis
Causes of Sudden Death in Athletes

1. Hypertrophic cardiomyopathy
2. Anomalous coronary artery
3. Myocarditis
4. Arrhythmogenic right ventricular cardiomyopathy
Causes of Sudden Death in Athletes

1. Hypertrophic cardiomyopathy
2. Anomalous coronary artery
3. Myocarditis
4. Arrhythmogenic right ventricular cardiomyopathy
Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC)
The Desmosome and It’s Function (Disrupted in ARVC)

Circulation. 2010;121:1533-1541
Fibrofatty Myocardial Replacement in ARVC
ECG Findings in ARVC

Epsilon wave
Antonio Puerta
Conclusion

• Sudden cardiac death in young athletes is a rare, but tragic phenomenon that results from a number of pathologies, most commonly hypertrophic cardiomyopathy.
Questions/Comments?
Having dumped the bag of ashes on the table, Stew hid behind the door and waited for the X-ray technician’s reaction.
<table>
<thead>
<tr>
<th>Family History</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Premature sudden cardiac death</td>
</tr>
<tr>
<td>2 Heart disease in surviving relatives < 50 yr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Personal History</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Heart murmur</td>
</tr>
<tr>
<td>4 Systemic hypertension</td>
</tr>
<tr>
<td>5 Fatigue</td>
</tr>
<tr>
<td>6 Syncope, near-syncope</td>
</tr>
<tr>
<td>7 Excessive, unexplained exertional dyspnea</td>
</tr>
<tr>
<td>8 Exertional chest pain</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 Heart murmur (supine/standing)</td>
</tr>
<tr>
<td>10 Femoral arterial pulses (to exclude coarctation of aorta)</td>
</tr>
<tr>
<td>11 Stigmata of Marfan syndrome</td>
</tr>
<tr>
<td>12 Brachial blood pressure measurement (sitting)</td>
</tr>
</tbody>
</table>
Sodium Channel and Heart Conditions

- Atrial fibrillation (AF)
- Brugada syndrome (BrS)
- BrS or LQTS
- Cardiac conduction defect (CCD)
- Dilated cardiomyopathy (DCM)
- Drug-induced torsades de pointes (drug-TdP)
- Long QT syndrome (LQTS)
- Mixed phenotype (BrS with SSS and/or CCD)
- Rare and common missense variants in health
- Sick sinus syndrome (SSS)
- Sudden infant death syndrome (SIDS)
Long QT Syndrome

- **KCNQ1 (LQT1)**
 - Swimming
 - Exertion/emotion
 - 35%

- **KCNH2 (LQT2)**
 - Auditory triggers
 - Postpartum period
 - 30%

- **SCN5A (LQT3)**
 - Sleep
 - Rest
 - 10%
Brugada Syndrome