Diabetes Mellitus and Alzheimer’s Disease: Pathophysiology, Oral Disease, and Exercise Physiology

Prepared by University of Nevada Las Vegas, Division of Health Sciences faculty
Georgia Dounis, DDS, MS
Sue Schuerman, PT, GCS, PhD
Susan VanBeuge, DNP, APRN, FNP-BC
Funding Acknowledgement

This training is supported in part by funds from the Bureau of Health Professions (BHPr), Health Resources and Services Administration (HRSA), Department of Health and Human Services (DHHS) under Geriatric Education Centers grant# UB4HP19205 for a total award of $2,082,315, and a supplemental grant for a total award of $134,905. Additional costs are embedded into general operations are incalculable. The information or content and conclusions are those of the author and should be not construed as the official position or policy of, nor endorsed by BHPr, HRSA, DHHS or the US Government.
Learning Objectives

• Develop and disseminate information addressing health problems of geriatric patients, with specific focus on diabetes mellitus (DM) and Alzheimer’s Disease (AD)

• Utilize a interprofessional approach to geriatric disease treatment and prevention with an open exchange of information and skill building from faculty and participants.

• Provide interprofessional training for faculty and providers who care for geriatric patients with a focus on team/patient bidirectional communication, prevention of co-morbidities and cultural sensitivity.

• Introduce and develop interprofessional team building skills using standardized patient teaching and simulation training.
Physiological Overview of Diabetes

- Diabetes defined
- Types of diabetes
- What is Glycosolated Hemoglobin A1C? (HgA1C, A1C)
- Treatment
- Chronic complications
- Aging and diabetes
Diabetes Mellitus Defined

• “Clinical diabetes mellitus is a syndrome of disordered metabolism with inappropriate hyperglycemia due either to absolute deficiency of insulin secretion or reduction in the biologic effectiveness of insulin or both”

Greenspan & Gardner, 2011
Type 1 Diabetes Mellitus

• Severe form associated with ketosis if untreated
• Catabolic disorder which circulating insulin is virtually absent, plasma glucagon is elevated and pancreatic \(\beta \) cells fail to respond
• Patients must have insulin to treat this disease
Type 2 Diabetes Mellitus

- Relative insulin deficiency, not absolute insulin deficiency
- Accounts for 80-90% of DM in the USA
- Insulin not needed to survive, though over time secretory capacity to produce insulin by the pancreatic β cells often diminishes over time
- Etiology is complex mix of genetics, tissue insensitivity and lifestyle factors
Subgroups of Type 2 Diabetes

• Obese
 – Insensitivity to endogenous insulin correlated with abdominal fat, distended adipocytes, over nourished liver and muscle cells develop resistance to insulin; hyperplasia of pancreatic β cells and increased insulin; with progression of disease, secondary failure of the pancreatic β cell production with exposure to prolonged fasting hyperglycemia
Subgroups of Type 2 Diabetes - continued

• Metabolic Syndrome (Syndrome X)
 – Syndrome with key elements: hyperglycemia often associated with hyperinsulinemia, dyslipidemia, hypertension and visceral obesity

• Non-Obese
 – Deficient insulin release by the pancreatic β cells seems to be the major defect but there is also a combination of insulin resistance; ethnicity and genetics play a factor in development
What Is Hemoglobin A1c?

• Hemoglobin formed by exposure to plasma glucose over time
• Used as a marker for average blood glucose levels over the previous 3 months
• The normal range of HbA1c is 4-5.9%
• Runs >/= 8.0% in poorly controlled DM
• Maintained at < 6.0% to 7.0% in well controlled DM
HgA1C Interpreted

- HgA1C is usually checked every three months by the treating provider
- This is the ability to monitor long-term serum glucose regulation
- The HgA1C level is proportional to average blood glucose concentration over the previous 4 weeks to 3 months
- Calculating the A1C: HgA1C x 35.6 – 77.3 = Average daily glucose
- Example: HgA1C = 11.4%
 - 11.4 x 35.6 = 405.84 – 77.3 = 328
 - 6.5 x 35.6 = 231.4 – 77.3 = 154
 - 5.3 x 35.6 = 188.68 – 77.3 = 111
Treatment of Diabetes Mellitus

- Diet
- Exercise
- Weight loss
- Pharmacotherapy
 - Oral agents
 - Injectables
Chronic Complications of DM

- Neurologic
- Oral
- Vascular
- Ophthalmologic
- Renal
- Cardiovascular
- Skin
- Bone and Joint
- GI/GU
Aging and Diabetes Mellitus

- Prevalence of DM approximately 26.9% of 10.9 million patients >65 years (National Diabetes Information Clearinghouse, 2011)
- Many with diabetes mellitus are obese and have other contributing characteristics such as age, gender, ethnicity, and BMI
- DM contributes to functional limitations
- Inflammatory markers: C-reactive protein (CRP) contribute to functional limitations in geriatric patients
Diabetes Statistics: Las Vegas

- 207,700 = total DM diagnosed and undiagnosed in Las Vegas in 2010
- Annual deaths = 1,840
- Total annual costs in 2010 = $2.6 Billion
- Future predictions:
 - 2015 = 282,700 pts with DM (cost = $3.5B)
 - 2025 = 451,800 pts with DM (cost = $5.5B)

http://www.altfutures.org/diabetes2025/
2010 Nevada Statistics: Seniors

• Senior population in Las Vegas = 329,600
• 164,800 pre-diabetes
• 88,600 with diabetes
• Total annual cost = $866 million
 – Medical costs = $609 million
 – Nonmedical costs = $257 million
DM and the Geriatric Patient

• Increased risk factors:
 – Increased BMI
 – Increased waist circumference
 – Hypertension
 – Age, gender, ethnicity

• Multidisciplinary assessment:
 – Physiological: medical, dental, nursing
 – Functional
 – Psychological
Alzheimer's Disease (AD)

- Defined: “Alzheimer’s disease is a neurodegenerative disease of the brain characterized by a clinical dementia with prominent memory impairment and specific microscopic pathology including senile plaques and neurofibrillary tangles”
Prevalence

• 5.3 million American’s of all ages have Alzheimer’s disease in 2015

• 5.1 million people are age 65 and older, with 200,000 under age 65

• 2/3 of American’s with Alzheimer’s disease are women

• By 2025, it is estimated that 7.1 million American’s age 65 and older will have AD
Projected Increases in AD

- The projected increases in AD rise sharply in 2030 as the baby boomer generation achieves age 65.
- The biggest increases in AD happened during ages 65-85 with a 2.5% incidence at age 65-70 years old and peaking at 50% in those over age 85.
- Average AD patient lives approximately 10 years from diagnosis to death (range 4-12 years)
Alzheimer’s Disease Pathology

• There are two main pathology features: senile plaques and neurofibrillary tangles.

• **Senile plaques** contain a specific type of amyloid, often referred to a β-amyloid or as “Aβ”. (This amyloid does not have anything to do with systemic amyloid or amyloidoses)

• Researchers believe these Aβ may cause the plaque damage in AD
AD Pathology - continued

• Neurofibrillary tangles
• Tangles are composed of hyperphosphorylated form of microtubule-associated protein Tau
• Tau is like the support beams or rivets in this microtubule system
• Tangles are like skeins of yarn; amount said to correlate with severity of AD

AD Diagnostic Criteria

• DSM-IV and National Institutes of Neurological & Communicative Disorders (NINCDS-ADRDA)

• Key Elements are:
 – Dementia
 – Progressive decline in: memory and at least one other major area of cognition (language, executive function)
 – No disturbance of consciousness, such as delirium or acute confusional state
 – Decline in function cannot be explained by another medical or brain disease
Common Signs, Symptoms, and Stages

<table>
<thead>
<tr>
<th>Prodromol</th>
<th>Mild AD</th>
<th>Moderate AD</th>
<th>Severe/late AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very mild cognitive decline</td>
<td>Memory loss</td>
<td>Increase memory loss</td>
<td>Inability to recognize family or to communicate</td>
</tr>
<tr>
<td>Memory lapses</td>
<td>Confusion about location or familiar places</td>
<td>Confusion</td>
<td>Lost sense of self</td>
</tr>
<tr>
<td>Poor word-finding</td>
<td>Taking longer to accomplish tasks</td>
<td>Problems recognizing friends/family</td>
<td>Weight loss</td>
</tr>
<tr>
<td>Decline in ability to plan and organize</td>
<td>Trouble handling $ or pay bills</td>
<td>Poor judgment lead to bad decisions</td>
<td>Groaning, moaning, grunting</td>
</tr>
<tr>
<td>Poor judgment lead to bad decisions</td>
<td>Difficulty organizing thoughts</td>
<td>Increased sleeping</td>
<td></td>
</tr>
<tr>
<td>Loss of spontaneity or sense of initiative</td>
<td>Inability to learn new things or coping</td>
<td>Loss of bladder/bowel control</td>
<td></td>
</tr>
<tr>
<td>Mood/personality changes, anxiety</td>
<td>Restlessness, agitation, anxiety, tearfulness, wandering</td>
<td>Seizures, skin infections, difficulty swallowing</td>
<td></td>
</tr>
<tr>
<td>Repetitive statements or movement</td>
<td>Aspiration pneumonia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hallucinations, delusions, suspiciousness, paranoia</td>
<td>Death</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Treatment

• Cholinesterase inhibitors
 – This class of drugs improve memory and other aspects of cognition, improved function, and reduce behavioral and neuropsychiatric sx.
 – They should be established as soon as a diagnosis is established, and continued until the goal of treatment is only hospice. Ultimately the goal is the pt to die care, dignity and comfort.
Interprofessional Team Care

- The AD team should include medical and non-medical members:
 - Medical providers: physician, dentist, nurse practitioner, physician assistant
 - Nutritionist, physical therapist, geropsychiatrists, occupational therapist
 - Home health case managers
 - Elder-law attorneys, support services (transportation, home care aid)
 - Care giver support!
Oral Disease T2D and Alzheimer’s Disease

• Why is oral health important?
• Common oral manifestations
 – Dental caries
 – Periodontal disease
• Oral Mucosa changes
• Salivary glands
Common Behavioral Oral-systemic Disease Risk Factors

- Diet
- Smoking
- Stress/Control
- Alcohol
- Hygiene
- Physical inactivity
Why is Oral Health Important?

- Teeth are designed to last over the course of life!
 - Loss due to disease
 - Dental caries - 85% > 65 y/o
 - Periodontal Disease - 98% > 65 y/o
 - Disease does not remain localized

- There is a strong link between oral disease and chronic diseases.
 - Systemic disease
 - T-2-D
 - Heart disease,
 - Cognitive decline

- “Oral health is essential to general health and well-being”

The U.S. Surgeon General
Healthy Periodontium
Classifications of Periodontal Disease

<table>
<thead>
<tr>
<th>Stages</th>
<th>Cause</th>
<th>Time interval</th>
<th>Brief histological depiction</th>
<th>Concise clinical description</th>
<th>Management options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gingivitis</td>
<td>Systemic factors: Medication induced xerostomia, gingival enlargement, immune status, mouth breathing, Local factors: biofilm, plaque(gram-positive cocci and filaments), calculus deposits</td>
<td>4-7 days-Initial lesion, > 14 days-chronic lesion Local host response</td>
<td>Chronic inflammatory cells, not associated with junctional epithelium periodontal ligament and connective tissue (CT) breakdown</td>
<td>Erythema, tissue edema, bleeding on probing/manipulation</td>
<td>Reversible after meticulous oral hygiene, removal soft/hard deposits. Salivary substitutes: Oral balance Moi-Stir MouthKote XeroLube Sialogogues: Evxac(Cevimeline) be aware Adverse side effects Caphosol artificial Saliva</td>
</tr>
<tr>
<td>Advanced lesion transition to periodontitis</td>
<td>Systemic factors: Medications, xerostomia, physical/cognitive impairment, chronic illness, social habits, financial constraints, oral health literacy Local factors: biofilm (gram-negative bacteria and spirochetes) expands into the subgingival space, calculus deposits, occlusion, tooth morphology/proximal contact, defective restorations, chronic advanced endodontic lesions</td>
<td>Local host response, >14 days Distant host dependent response</td>
<td>Response to biofilm noxious substances cause chronic inflammatory elevated levels of monocytes; lymphocytes induce fibrotic response that has both local (CT breakdown and alveolar bone resorption) and systemic inflammatory manifestations.</td>
<td>Inflammation has extended to clinical loss of adjacent attachment, pocket depth 4-5 mm in moderate disease, advanced disease pocket depth >5mm, evidence of alveolar bone loss. Evidence of furcation involvement, tooth mobility is associated with chronic inflammation.</td>
<td>Meticulous oral hygiene, with removal of supra/sub gingival soft/hard deposits, Non alcohol based Chlorhexidine gluconate 0.12% oral rinse(Peridex) Fluoride (Duraphat) varnish (Post periodontal surgery) Essential Oils (Listerine) Tricosan (Colgate Plax)</td>
</tr>
</tbody>
</table>
Periodontal and gingival tissues
Elderly have a higher plaque (thin sticky film of bacteria that adheres to the surface of teeth) score

• Gingivitis
• Periodontitis

[Insert clinical images of gingivitis and periodontitis]
Periodontal Disease (PD)

- Diet accumulation of biofilm on the retentive surfaces of dentition affect majority elderly
- **Oral disease and T2D are chronic inflammatory diseases with bidirectional relationship**
 - There is increasing evidence that patients with T2D and poor glycemic control have an increased risk of PD
 - PD contributes to increased insulin resistance leading to increased risk/progression of T2D
Impact of Diabetes on Periodontal Bone Loss

Diagram:
- Bacteria + Diabetes → Inflammation
 - ↑ Osteoclasts
 - ↓ Osteoblasts
 - ↑ Bone Resorption
 - ↓ Bone Formation
- Decreased Coupling and Net Periodontal Bone Loss
Periodontal Disease

- Is a sequelae of diseases
- Accounts for 30-35% of tooth loss
- >Men, ↑ in 30-40’s and older

Risk Factors
 - Diabetes
 - Medications which dry the mouth
 - Hypertension, renal, diuretics
 - Smoking
 - Hormonal changes
Risk Factors

• Specific examples of risk factors for periodontal diseases are age, gender, socioeconomic status, genetics, plaque biofilm, self-care, tobacco, stress, and diabetes

• Not all risk factors are modifiable
Prevention of Periodontal Disease

• Requires daily mechanical plaque control (toothbrushing and interdental cleaning) often supplemented with chemical control measures for plaque biofilm as an additional component (adjunct) of the primary treatment

• Fluoride mouth rinses can be used to aid in preventing root and coronal caries
Common Oral Manifestations

Dental caries

Modifiable risk factors
- diet dependent
- medication
- stress

Older adults
- Higher plaque score
- 4x more likely to have unrestored dental caries than children
Oral Mucosa

- Glossodynia (Burning tongue/painful sensation)
 - Etiology: idiopathic
 - Other causes
 - Trauma/Ill fitting prosthesis
 - Nutritional deficiencies, i.e. Vit B, Fe
 - Onset of T-2-D
 - Differential Dx screen pt for depression

- Clinically manifestation:
 - Beefy red appearance-exfoliating
 - Associated with xerostomia
 - Chronic burning

- Management: lab test to R/O
 - Fungal infection/Candidiasis
 - Nutritional deficiencies
- Poor wound healing
Salivary Glands

• Xerostomia (dry mouth)
• Salivary hypofunction
• Sialadenosis (enlargement of salivary glands)/noninflammatory disorder (parotid)
 – Associated with T-2-D
 – Malnutrition
 – Alcoholism
 – Bulimia

[Insert clinical image of salivary hypofunction]
Alzheimer’s Disease and Oral Disease

• A number of studies have found that those who experienced tooth loss of half or more of their natural dentition before 35 years of age had a 1.7 greater risk for Alzheimer's disease.

• Evidence to support that IL-6, and other cytokines will cross the BBB

• In all these studies it was concluded that oral disease is a risk factor for Alzheimer's
Other Manifestations of AD that Will Effect Oral Disease

- Xerostomia - medication induced
- Fever
- Malaise
- Dysgeusia (altered taste)
- Stomatitis – *Candida*
- Spasms of the muscles of mastication
- Tardive dyskinesia
- Hyposalivation
- Reduce appetite
- Decrease social contact
- Decline in IADL
- Lack of oral hygiene practice - *Irritable/Combative*
- Decline in self-care ADL - *forget to remove prosthesis*
Health is shaped by an interaction of biological, physiological, behavioral, and environmental factors that unfold over the course of life.
Exercise and Diabetes

• What is the best intervention to reduce HgA1c levels & maintain functional capacity (Verdijk et al., 2013)?

• Exercise intensity

• Exercise prescription
 – Adults with and without diabetes

• Challenges of safe exercise
Exercise and Diabetes
What is the Best Intervention?

• Many studies in past 10+ years have shown that Hemoglobin A1c levels are decreased with aerobic ex, resistance ex, or a combination in individuals with Type 2 diabetes

• However, many of these studies were underpowered in terms of comparing the types of exercise
Studies with Adequate Power and Control Groups

• Sigal et al., 2007: greatest benefit with combination but benefit with all exercise in HgA1c levels – exercised 4.5 hrs per week

• Church et al., 2010: significant benefit in HgA1c levels with combination but benefit with all – aerobic ex at 65% of VO2 max – aerobic & resistant groups exercised 2.33 hrs/wk & combo group exercise 2.42 hrs/wk for 9 mos

• Conclusion: combination for HgA1c levels
Exercise Prescription
Adults w/ Type II DM

• Submaximal endurance test (such as 1 mile walk) should be performed by a PT to estimate VO2max to measure baseline for improvement & compare to norms for age (ACSM’s Guidelines for Exercise Testing & Prescription, 9th ed) or the Six Minute Walk Test (American Thoracic Society) to compare distance to norms for the less fit

• Intensity: moderate intensity aerobic exercise defined as 3-6 METS or 150 Kcal/day
Examples of 3 to 6 MET Activities

• 3 MET
 – Walking 2.5 mph level

• 4 MET
 – Biking <10 mph leisure
 – Walking 3.5 mph level, brisk

• 5 MET
 – Stationary bike – 100 Watts (5.5), light effort
 – Low impact aerobics
 – Walking 4 mph level

• 6 MET
 – Biking 10-11.9 mph leisure
Exercise Prescription - continued

- Church et al, 2010 recommend 46 minutes of vigorous aerobic exercise (60-80% of VO2max) 3 days per week for HbA1c decreases in adults with Type II diabetes
- Church et al, 2010: Work up to 47 minutes of resistance exercise 3 days/wk for adults with Type II diabetes (8-10 exercises of large muscle groups; 8-12 repetitions to fatigue for healthy adults ACSM 2007) but dilemma: How to prescribe? Individualized and supervised initially and periodically
- Mode: any exercise that uses large muscle groups to an appropriate level of the patient’s capacity, needs, & interest
- Warm-up and cool-down
Challenges of Safe Exercise

- Recommend that patients see a physical therapist for initial evaluation and instruction in exercise program (2-3 visits plus 1-2 F/U visits over time)
- Many older adults have musculoskeletal problems and other co-morbidities that mean that the exercise prescription would have to be tailored to each individual patient as much as possible
- Precaution: Acute cardiac events significantly associated with episodic physical activity so must progress vigor of activity slowly (Dahabreh and Paulus, 2011)
Aerobic Exercise and AD

• What has aerobic exercise been shown to accomplish for patients with AD?
 – Decrease the risk of developing AD (Budson & Solomon, 2011)
 – Enhance memory (Scarmeas et al., 2009a)
 – Slow memory loss (Budson & Solomon, 2011)
 – Enhance cognitive function (Weuve et al., 2004)
How Are These Benefits Achieved?

• Several studies using rats have shown that aerobic exercise results in new brain cells developing in the hippocampus (Galvan & Bredesen, 2007)
What is the Role of the Hippocampus?

• Part of the limbic system
• Assists in the consolidation of information from short-term memory to long-term memory and also spatial navigation (Wikipedia)
• Hence the early symptoms of loss of memory & disorientation in AD
Physiologic Basis of Other Benefits of Aerobic Exercise for AD

• Can increase brain volume (Colcombe et al., 2006; 2008; Galvan & Bredesen, 2007)
• Can improve cognitive function (Weuve et al., 2004)
How Much Aerobic Exercise?

• The rat studies have shown a direct relationship between the amount of aerobic exercise and the development of new cells in the hippocampus (Galvan & Bredesen, 2007)
• “Some exercise is good, and more exercise is better.” (Budson & Solomon, 2011, p 218)
• Follow the guidelines for diabetes management and the precautions
The Cost of Diabetes in the US

• In 2007, total costs were $174 billion
 – Direct medical costs = $116 billion – after adjusting for population age and sex differences, average medical expenditures among people with diagnosed DM were 2.3 times higher than what expenditures would be without diabetes
 – Indirect costs = $58 billion – disability, work loss, premature mortality
Cost and Payment for Health Care

• Most geriatric patients enrolled in Medicare have significant out of pocket expenses related to outpatient care and dental services
• Outpatient physician providers = 15% cost covered by patient
• Dental care = 76% covered by patient
• Physical therapy outpatient costs = approximately 19%
Retirement Income

- Median income for age 65 and older in 2010 = $25,757 (Social Security Administration)
- The poverty rate for people age 65 and over was 8.7%
- Average spend 12-14% of their income on healthcare or $3,090 - $3,605
Summary: Chronicity of DM

- Neurologic
- Oral
- Vascular
- Ophthalmologic
- Renal
- Cardiovascular
- Skin
- Bone and Joint
- GI/GU
<table>
<thead>
<tr>
<th>Prodromol</th>
<th>Mild AD</th>
<th>Moderate AD</th>
<th>Severe/late AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very mild cognitive decline</td>
<td>Memory loss</td>
<td>Increase memory loss</td>
<td>Inability to recognize family or to communicate</td>
</tr>
<tr>
<td>Memory lapses</td>
<td>Confusion about location or familiar places</td>
<td>Confusion</td>
<td>Lost sense of self</td>
</tr>
<tr>
<td>Poor word-finding</td>
<td>Taking longer to accomplish tasks</td>
<td>Problems recognizing friends/family</td>
<td>Weight loss</td>
</tr>
<tr>
<td>Decline in ability to plan and organize</td>
<td>Trouble handling $ or pay bills</td>
<td>Poor judgment lead to bad decisions</td>
<td>Groaning, moaning, grunting</td>
</tr>
<tr>
<td></td>
<td>Poor judgment lead to bad decisions</td>
<td>Difficulty organizing thoughts</td>
<td>Increased sleeping</td>
</tr>
<tr>
<td></td>
<td>Loss of spontaneity or sense of initiative</td>
<td>Inability to learn new things or coping</td>
<td>Loss of bladder/bowel control</td>
</tr>
<tr>
<td></td>
<td>Mood/personality changes, anxiety</td>
<td>Restlessness, agitation, anxiety, tearfulness, wandering</td>
<td>Seizures, skin infections, difficulty swallowing</td>
</tr>
<tr>
<td></td>
<td>Repetitive statements or movement</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Repetitive statements or movement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aspiration pneumonia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hallucinations, delusions, suspiciousness, paranoia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Death</td>
</tr>
</tbody>
</table>

References

• Dahabreh IJ, Paulus JK. Association of episodic physical and sexual activity with triggering of acute cardiac events: systematic review and meta-analysis. JAMA. 2011;305(12):1225-33.

