Diabetes Mellitus: Physiology, Oral Health and Exercise

Georgia Dounis, DDS, MS
Sue Schuerman, PT, GCS, PhD
Susan VanBeuge, DNP, APRN, FNP-BC
Funding Acknowledgement

This training is supported in part by funds from the Bureau of Health Professions (BHPr), Health Resources and Services Administration (HRSA), Department of Health and Human Services (DHHS) under Geriatric Education Centers grant# UB4HP19205 for a total award of $2,082,315, and a supplemental grant for a total award of $134,905. Additional costs are embedded into general operations are incalculable. The information or content and conclusions are those of the author and should be not construed as the official position or policy of, nor endorsed by BHPr, HRSA, DHHS or the US Government.
Learning Objectives

• Develop and disseminate information addressing health problems of geriatric patients, with specific focus on diabetes mellitus.

• Utilize an interprofessional approach to geriatric disease treatment and prevention with an open exchange of information and skill building from faculty and participants.

• Provide interprofessional training for faculty and providers who care for geriatric patients with a focus on team/patient bidirectional communication, prevention of co-morbidities and cultural sensitivity.

• Introduce and develop interprofessional team building skills using standardized patient teaching and simulation training.
Physiological Overview of Diabetes

• Diabetes defined
• Types of diabetes
• What is Glycosylated Hemoglobin A1C? (HgA1C, A1C)
• Treatment
• Chronic complications
• Aging and diabetes
Diabetes Mellitus (DM) Defined

• “Clinical diabetes mellitus is a syndrome of disordered metabolism with inappropriate hyperglycemia due either to absolute deficiency of insulin secretion or reduction in the biologic effectiveness of insulin or both”

Greenspan & Gardner, 2004
Type 1 Diabetes Mellitus

- Severe form associated with ketosis if untreated
- Catabolic disorder which circulating insulin is virtually absent, plasma glucagon is elevated and pancreatic β cells fail to respond
- Patients must have insulin to treat this disease
Type 2 Diabetes Mellitus

- Relative insulin deficiency, not absolute insulin deficiency
- Accounts for 80-90% of DM in the USA
- Insulin not needed to survive, though over time secretory capacity to produce insulin by the pancreatic β cells often diminishes over time
- Etiology is complex mix of genetics, tissue insensitivity and lifestyle factors
Subgroups of type 2 diabetes

• Obese
 – Insensitivity to endogenous insulin correlated with abdominal fat, distended adipocytes, over nourished liver and muscle cells develop resistance to insulin; hyperplasia of pancreatic β cells and increased insulin; with progression of disease, secondary failure of the pancreatic β cell production with exposure to prolonged fasting hyperglycemia
Subgroups of Type 2 Diabetes

• Metabolic Syndrome (Syndrome X)
 – Syndrome with key elements: hyperglycemia often associated with hyperinsulinemia, dyslipidemia, hypertension and visceral obesity

• Non-Obese
 – Deficient insulin release by the pancreatic β cells seems to be the major defect but there is also a combination of insulin resistance; ethnicity and genetics play a factor in development
What Is Hemoglobin A1c?

- Hemoglobin formed by exposure to plasma glucose over time
- Used as a marker for average blood glucose levels over the previous 3 months
- The normal range of HbA1c is 4-5.9%
- Runs >= 8.0% in poorly controlled DM
- Maintained at < 6.0% to 7.0% in well controlled DM
HgA1C Interpreted

- HgA1C is usually checked every three months by the treating provider
- This is the ability to monitor long-term serum glucose regulation
- The HgA1C level is proportional to average blood glucose concentration over the previous 4 weeks to 3 months
- Calculating the A1C: HgA1C x 35.6 – 77.3 = Average daily glucose
- Example: HgA1C = 11.4%
 - 11.4 x 35.6 = 405.84 – 77.3 = 328
 - 6.5 x 35.6 = 231.4 – 77.3 = 154
 - 5.3 x 35.6 = 188.68 – 77.3 = 111
Treatment of Diabetes Mellitus

- Diet
- Exercise
- Weight loss
- Pharmacotherapy
 - Oral agents
 - Injectables
Chronic Complications of DM

- Neurologic
- Oral
- Vascular
- Ophthalmologic
- Renal
- Cardiovascular
- Skin
- Bone and Joint
- GI/GU
Aging and Diabetes Mellitus

- Prevalence of DM approximately 26.9% of 10.9 million patients >65 years (National Diabetes Information Clearinghouse, 2011)
- Many with diabetes mellitus are obese and have other contributing characteristics such as age, gender, ethnicity, and BMI
- DM contributes to functional limitations
- Inflammatory markers: C-reactive protein (CRP) contribute to functional limitations in geriatric patients
DM and the Geriatric Patient

• Increased risk factors:
 – Increased BMI
 – Increased waist circumference
 – Hypertension
 – Age, gender, ethnicity

• Multidisciplinary assessment:
 – Physiological: medical, dental, nursing
 – Functional
 – Psychological
Oral Health and Diabetes

• Why is oral health important?
• Common oral manifestations
• Periodontal and gingival tissues
• Periodontal disease
• Oral Mucosa
• Salivary glands
Why is Oral Health Important?

- Teeth are for a lifetime!
- There is a strong link between oral health and general health.
- “Oral health is essential to general health and well-being”

The U.S. Surgeon General
Common Oral Manifestations

Dental tissue
 – Dental caries

[Insert clinical image(s) of dental caries]
Periodontal and Gingival Tissues

- Gingivitis
- Periodontitis

[Insert clinical/microbiological image(s) of plaque, gingivitis and periodontitis]
Periodontal Disease

- Diet accumulation of biofilm on the retentive surfaces of dentition affect 64% elderly.
- Oral bacteria penetrate blood vessels, connective tissue, and progress to invade tissue, organs, systemic pathways that contribute to systemic disease.
- Poorer glycemic control is particularly associated with elevated IL-1β cytokine levels found in gingival crevicular fluid that increase severity of gingivitis and periodontitis.
Periodontal Disease - continued

• Is a sequelae of diseases
• Accounts for 30-35% of tooth loss
• >Men, ↑ in 30-40’s and older
• Risk Factors
 – Diabetes
 – Medications which dry the mouth
 • Hypertension, renal, diuretics
 – Smoking
 – Hormonal changes
Oral Mucosa

- Glossodynia (Burning tongue)
 - Etiology: idiopathic
- Fungal infection
- Poor wound healing

[Insert clinical images]
Salivary Glands

- Xerostomia (dry mouth)
- Salivary hypofunction
- Sialadenosis (enlargement of salivary glands)

[Insert clinical images]
Exercise and Diabetes

- What is the best intervention?
- Exercise intensity
- Exercise prescription
 - Adults with and without diabetes
- Challenges of safe exercise
Exercise and Diabetes
What is the Best Intervention?

• Many studies in past 10+ years have shown that Hemoglobin A1c levels are decreased with aerobic ex, resistance ex, or a combination in individuals with Type 2 diabetes

• However, many of these studies were underpowered in terms of comparing the types of exercise

- Diabetes Aerobic and Resistance Exercise (DARE) Study – well powered & controlled
- All ex groups showed reduced HbA1c compared to control group
- Combination group had a larger reduction (1.0%) compared with the resistance groups (0.4%) & aerobic groups (0.5%)
Study by Sigal, et al, 2007 (cont)

• Combination group performed 135 minutes (38.5 mins/dy if 7 dys/wk) of resistance and 135 minutes (38.5 mins/dy if 7 dys/wk) of aerobic exercise per week for a total of 270 minutes of exercise per week.

• The question was: Was the greater decrease due to the combination or due to the much higher time of exercise?

• Church et al, 2010 performed the Health Benefits of Aerobic & Resistance Training (HART-D) study to compare exercise forms.
Church et al, 2010 – HART-D Study

- Sedentary men & women with type 2 diabetes
- Maintained similar weekly training durations
- 9 month intervention
- Control group and 3 exercise groups
 - Aerobic training only
 - Resistance training only
 - Combination
- 262 subjects randomized (mean age 55.8)
Exercise Intensity in Church et al, 2010 Study

• Aerobic & combination groups performed aerobic exercise at 65% of their VO2 max 3 times per week & aerobic group averaged 140 mins/week (46 mins/visit)

• Resistance group lifted weights 3 times per week averaging 141 mins/wk (47 mins/visit) and averaging 2376 lbs/wk

• Combination group averaged 110 mins/week (37 mins/visit) on the treadmill & 35 mins/wk lifting weights averaging 2333 lbs/wk (778 lbs/visit)
Church et al, 2010 Results

- Mean change in HbA1c in combination group compared to control was -0.34% (p=.03)
- Mean changes in HbA1c for resistance training compared to control was -0.16% (p=.32)
- Mean changes in HbA1c for aerobic training compared to control was -0.24% (p=.14)
- Only the combination group increased maximum oxygen consumption (p<.05) compared with the control group
Church et al, 2010 Results - continued

• All exercise groups lost waist circumference compared to the control group
• The resistance group and the combination group lost mean fat mass compared to the control group (p<0.05)
• Conclusion: the combination of resistance and aerobic exercise improved HbA1c levels significantly more than each exercise alone
Exercise Prescription
Healthy Adults and Adults w/ Type II DM

- Submaximal endurance test (such as 1 mile walk) should be performed by a PT to estimate VO2max to measure baseline for improvement & compare to norms for age (ACSM’s Guidelines for Exercise Testing & Prescription, 7th ed) or the Six Minute Walk Test to compare distance to norms for the less fit
- Frequency and Intensity: at least 5 days of the week for moderate intensity aerobic exercise defined as 3-6 METS or 150 Kcal/day (CDC, NIH, ACSM, 1995) or vigorous intensity aerobic exercise for 20 minutes 3 days/wk (ACSM & AHA, 2007) for healthy adults
Examples of 3 to 6 MET Activities

• 3 MET
 – Walking 2.5 mph level

• 4 MET
 – Biking <10 mph leisure
 – Walking 3.5 mph level, brisk

• 5 MET
 – Stationary bike – 100 Watts (5.5), light effort
 – Low impact aerobics
 – Walking 4 mph level

• 6 MET
 – Biking 10-11.9 mph leisure
Exercise Prescription
Healthy Adults and Adults w/ Type II DM

• Church et al, 2010 recommend 46 minutes of vigorous aerobic exercise (60-80% of VO2max) 3 days per week for HbA1c decreases in adults with Type II diabetes

• ACSM & AHA, 20007 recommend activities to increase strength at least 2 days/wk; 8-10 exercises of large muscle groups; 8-12 repetitions to fatigue for healthy adults

• Church et al, 2010: Work up to 47 minutes of resistance exercise 3 days/wk for adults with Type II diabetes but dilemma: How to prescribe? Individualized and supervised initially and periodically

• Mode: any exercise that uses large muscle groups to an appropriate level of the patient’s capacity, needs, & interest

• Warm-up and cool-down
Challenges of Safe Exercise

• Recommend that patients see a physical therapist for initial evaluation and instruction in exercise program (2-3 visits plus 1-2 F/U visits over time)

• Many older adults have musculoskeletal problems and other co-morbidities that mean that the exercise prescription would have to be tailored to each individual patient as much as possible

• Precaution: Acute cardiac events significantly associated with episodic physical activity so must progress vigor of activity slowly (Dahabrch IJ & Paulus JK. JAMA. 2011 Mar 23/30; 305(12): 1225-1233)
The Cost of Diabetes in the US

• In 2007, total costs were $174 billion
 – Direct medical costs = $116 billion – after adjusting for population age and sex differences, average medical expenditures among people with diagnosed DM were 2.3 times higher than what expenditures would be without diabetes
 – Indirect costs = $58 billion – disability, work loss, premature mortality
Cost and Payment for Health Care

- Most geriatric patients enrolled in Medicare have significant out of pocket expenses related to outpatient care and dental services.
- Outpatient physician providers = 15% cost covered by patient.
- Dental care = 76% covered by patient.
- Physical therapy outpatient costs = approximately 19%.
Retirement Income

• Median income for age 65 and older in 2010 = $25,757 (Social Security Administration)
• The poverty rate for people age 65 and over was 8.7%
• Average spend 12-14% of their income on healthcare or $3,090 - $3,605
Summary: Chronicity of DM

- Neurologic
- Oral
- Vascular
- Ophthalmologic
- Renal
- Cardiovascular
- Skin
- Bone and Joint
- GI/GU
References

• Dahabreh IJ, Paulus JK. Association of episodic physical and sexual activity with triggering of acute cardiac events: systematic review and meta-analysis. JAMA. 2011;305(12):1225-33.

References - continued

